Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.487
Filtrar
1.
Sci Rep ; 14(1): 8214, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589426

RESUMO

The feasibility of low frequency pure tone generation in the inner ear by laser-induced nonlinear optoacoustic effect at the round window was demonstrated in three human cadaveric temporal bones (TB) using an integral pulse density modulation (IPDM). Nanosecond laser pulses with a wavelength in the near-infrared (NIR) region were delivered to the round window niche by an optical fiber with two spherical lenses glued to the end and a viscous gel at the site of the laser focus. Using IPDM, acoustic tones with frequencies between 20 Hz and 1 kHz were generated in the inner ear. The sound pressures in scala tympani and vestibuli were recorded and the intracochlear pressure difference (ICPD) was used to calculate the equivalent sound pressure level (eq. dB SPL) as an equivalent for perceived loudness. The results demonstrate that the optoacoustic effect produced sound pressure levels ranging from 140 eq. dB SPL at low frequencies ≤ 200 Hz to 90 eq. dB SPL at 1 kHz. Therefore, the produced sound pressure level is potentially sufficient for patients requiring acoustic low frequency stimulation. Hence, the presented method offers a potentially viable solution in the future to provide the acoustic stimulus component in combined electro-acoustic stimulation with a cochlear implant.


Assuntos
Janela da Cóclea , Som , Humanos , Estimulação Acústica , Janela da Cóclea/fisiologia , Rampa do Tímpano/fisiologia , Lasers , Cóclea/fisiologia
2.
Commun Biol ; 7(1): 421, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582813

RESUMO

Moderate noise exposure induces cochlear synaptopathy, the loss of afferent ribbon synapses between cochlear hair cells and spiral ganglion neurons, which is associated with functional hearing decline. Prior studies have demonstrated noise-induced changes in the distribution and number of synaptic components, but the dynamic changes that occur after noise exposure have not been directly visualized. Here, we describe a live imaging model using RIBEYE-tagRFP to enable direct observation of pre-synaptic ribbons in mature hearing mouse cochleae after synaptopathic noise exposure. Ribbon number does not change, but noise induces an increase in ribbon volume as well as movement suggesting unanchoring from synaptic tethers. A subgroup of basal ribbons displays concerted motion towards the cochlear nucleus with subsequent migration back to the cell membrane after noise cessation. Understanding the immediate dynamics of synaptic damage after noise exposure may facilitate identification of specific target pathways to treat cochlear synaptopathy.


Assuntos
Perda Auditiva Provocada por Ruído , Animais , Camundongos , Perda Auditiva Provocada por Ruído/etiologia , Perda Auditiva Provocada por Ruído/metabolismo , Cóclea , Audição , Ruído/efeitos adversos , Sinapses/fisiologia
3.
Proc Natl Acad Sci U S A ; 121(15): e2314763121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557194

RESUMO

Although sudden sensorineural hearing loss (SSNHL) is a serious condition, there are currently no approved drugs for its treatment. Nevertheless, there is a growing understanding that the cochlear pathologies that underlie SSNHL include apoptotic death of sensory outer hair cells (OHCs) as well as loss of ribbon synapses connecting sensory inner hair cells (IHCs) and neurites of the auditory nerve, designated synaptopathy. Noise-induced hearing loss (NIHL) is a common subtype of SSNHL and is widely used to model hearing loss preclinically. Here, we demonstrate that a single interventive application of a small pyridoindole molecule (AC102) into the middle ear restored auditory function almost to prenoise levels in a guinea pig model of NIHL. AC102 prevented noise-triggered loss of OHCs and reduced IHC synaptopathy suggesting a role of AC102 in reconnecting auditory neurons to their sensory target cells. Notably, AC102 exerted its therapeutic properties over a wide frequency range. Such strong improvements in hearing have not previously been demonstrated for other therapeutic agents. In vitro experiments of a neuronal damage model revealed that AC102 protected cells from apoptosis and promoted neurite growth. These effects may be explained by increased production of adenosine triphosphate, indicating improved mitochondrial function, and reduced levels of reactive-oxygen species which prevents the apoptotic processes responsible for OHC death. This action profile of AC102 might be causal for the observed hearing recovery in in vivo models.


Assuntos
Perda Auditiva Provocada por Ruído , Perda Auditiva Neurossensorial , Cobaias , Animais , Audição , Cóclea , Ruído/efeitos adversos , Células Ciliadas Auditivas Externas/fisiologia , Limiar Auditivo
4.
Sci Data ; 11(1): 416, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653806

RESUMO

Our sense of hearing is mediated by cochlear hair cells, of which there are two types organized in one row of inner hair cells and three rows of outer hair cells. Each cochlea contains 5-15 thousand terminally differentiated hair cells, and their survival is essential for hearing as they do not regenerate after insult. It is often desirable in hearing research to quantify the number of hair cells within cochlear samples, in both pathological conditions, and in response to treatment. Machine learning can be used to automate the quantification process but requires a vast and diverse dataset for effective training. In this study, we present a large collection of annotated cochlear hair-cell datasets, labeled with commonly used hair-cell markers and imaged using various fluorescence microscopy techniques. The collection includes samples from mouse, rat, guinea pig, pig, primate, and human cochlear tissue, from normal conditions and following in-vivo and in-vitro ototoxic drug application. The dataset includes over 107,000 hair cells which have been identified and annotated as either inner or outer hair cells. This dataset is the result of a collaborative effort from multiple laboratories and has been carefully curated to represent a variety of imaging techniques. With suggested usage parameters and a well-described annotation procedure, this collection can facilitate the development of generalizable cochlear hair-cell detection models or serve as a starting point for fine-tuning models for other analysis tasks. By providing this dataset, we aim to give other hearing research groups the opportunity to develop their own tools with which to analyze cochlear imaging data more fully, accurately, and with greater ease.


Assuntos
Cóclea , Animais , Camundongos , Cobaias , Humanos , Ratos , Suínos , Células Ciliadas Auditivas , Microscopia de Fluorescência , Aprendizado de Máquina
5.
J Vis Exp ; (205)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497652

RESUMO

The ear is the organ most susceptible to explosion overpressure, and cochlear injuries frequently occur after blast exposure. Blast exposure can lead to sensorineural hearing loss (SNHL), which is an irreversible hearing loss that negatively affects the quality of life. Detailed blast-induced cochlear pathologies, such as the loss of hair cells, spiral ganglion neurons, cochlear synapses, and disruption of stereocilia, have been previously documented. However, determining cochlear sensorineural deterioration after a blast injury is challenging because animals exposed to blast overpressure usually experience tympanic membrane perforation (TMP), which causes concurrent conductive hearing loss. To evaluate pure sensorineural cochlear dysfunction, we developed an experimental animal model of blast-induced cochlear injury using a laser-induced shock wave. This method avoids TMP and concomitant systemic injuries and reproduces the functional decline in the SNHL component in an energy-dependent manner after LISW exposure. This animal model could be a platform for elucidating the pathological mechanisms and exploring potential treatments for blast-induced cochlear dysfunction.


Assuntos
Traumatismos Craniocerebrais , Perda Auditiva Neurossensorial , Animais , Explosões , Qualidade de Vida , Cóclea , Lasers
6.
J Acoust Soc Am ; 155(3): 1799-1812, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38445986

RESUMO

Non-invasive electrophysiological measures, such as auditory evoked potentials (AEPs), play a crucial role in diagnosing auditory pathology. However, the relationship between AEP morphology and cochlear degeneration remains complex and not well understood. Dau [J. Acoust. Soc. Am. 113, 936-950 (2003)] proposed a computational framework for modeling AEPs that utilized a nonlinear auditory-nerve (AN) model followed by a linear unitary response function. While the model captured some important features of the measured AEPs, it also exhibited several discrepancies in response patterns compared to the actual measurements. In this study, an enhanced AEP modeling framework is presented, incorporating an improved AN model, and the conclusions from the original study were reevaluated. Simulation results with transient and sustained stimuli demonstrated accurate auditory brainstem responses (ABRs) and frequency-following responses (FFRs) as a function of stimulation level, although wave-V latencies remained too short, similar to the original study. When compared to physiological responses in animals, the revised model framework showed a more accurate balance between the contributions of auditory-nerve fibers (ANFs) at on- and off-frequency regions to the predicted FFRs. These findings emphasize the importance of cochlear processing in brainstem potentials. This framework may provide a valuable tool for assessing human AN models and simulating AEPs for various subtypes of peripheral pathologies, offering opportunities for research and clinical applications.


Assuntos
Nervo Coclear , Potenciais Evocados Auditivos , Animais , Humanos , Percepção Auditiva , Cóclea , Simulação por Computador
7.
Int J Med Robot ; 20(1): e2609, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38536718

RESUMO

BACKGROUND: Cochlear-implant electrode arrays (EAs) are currently inserted with limited feedback, and impedance sensing has recently shown promise for EA localisation. METHODS: We investigate the use of impedance sensing to infer the progression of an EA during insertion. RESULTS: We show that the access resistance component of bipolar impedance sensing can detect when a straight EA reaches key anatomical locations in a plastic cochlea and when each electrode contact enters/exits the cochlea. We also demonstrate that dual-sided electrode contacts can provide useful proximity information and show the real-time relationship between impedance and wall proximity in a cadaveric cochlea for the first time. CONCLUSION: The access resistance component of bipolar impedance sensing has high potential for estimating positioning information of EAs relative to anatomy during insertion. Main limitations of this work include using saline as a surrogate for human perilymph in ex vivo models and using only one type of EA.


Assuntos
Implante Coclear , Implantes Cocleares , Humanos , Impedância Elétrica , Cóclea/cirurgia , Eletrodos Implantados
8.
J Vis Exp ; (204)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38465931

RESUMO

Efficient and minimally invasive drug delivery to the inner ear is a significant challenge. The round window membrane (RWM), being one of the few entry points to the inner ear, has become a vital focus of investigation. However, due to the complexities of isolating the RWM, our understanding of its pharmacokinetics remains limited. The RWM comprises three distinct layers: the outer epithelium, the middle connective tissue layer, and the inner epithelial layer, each potentially possessing unique delivery properties. Current models for investigating transport across the RWM utilize in vivo animal models or ex vivo RWM models which rely on cell cultures or membrane fragments. Guinea pigs serve as a validated preclinical model for the investigation of drug pharmacokinetics within the inner ear and are an important animal model for the translational development of delivery vehicles to the cochlea. In this study, we describe an approach for explantation of a guinea pig RWM with surrounding cochlear bone for benchtop drug delivery experiments. This method allows for preservation of native RWM architecture and may provide a more realistic representation of barriers to transport than current benchtop models.


Assuntos
Orelha Interna , Janela da Cóclea , Cobaias , Animais , Janela da Cóclea/cirurgia , Orelha Interna/metabolismo , Cóclea , Sistemas de Liberação de Medicamentos , Modelos Animais
9.
Exp Gerontol ; 189: 112401, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490286

RESUMO

Age-related hearing loss (ARHL) is the most common sensory disorder associated with human aging. Chronic inflammation is supposed to be an important contributor to ARHL. Yet, the underlying mechanisms of developing cochlear inflammation are still not well understood. In this study, we found that the inflammation, endoplasmic reticulum (ER) stress and necroptosis signalings are activated in the cochlea of aged C57BL/6 mice. ER stress activator tunicamycin (TM) induced necroptosis in cochlear HEI-OC1 cells and cochlear explants, while necroptosis inhibitors protected cochlear cells from ER stress-induced cell death. The antioxidants inhibited necroptosis and protected HEI-OC1 cells from TM insults. Necroptotic HEI-OC1 cells promoted the activation of the co-cultured macrophages via Myd88 signaling. Moreover, necroptosis inhibitor protected from TM-induced hearing loss, and inhibited inflammation in C57BL/6 mice. These findings suggest that ER stress-induced necroptosis promotes cochlear inflammation and hearing loss. Targeting necroptosis serves as a potential approach for the treatment of cochlear inflammation and ARHL.


Assuntos
Necroptose , Presbiacusia , Camundongos , Animais , Humanos , Idoso , Camundongos Endogâmicos C57BL , Cóclea/metabolismo , Estresse do Retículo Endoplasmático/fisiologia
10.
Hear Res ; 445: 108994, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520899

RESUMO

African mole-rats display highly derived hearing that is characterized by low sensitivity and a narrow auditory range restricted to low frequencies < 10 kHz. Recently, it has been suggested that two species of these rodents do not exhibit distortion product otoacoustic emissions (DPOAE), which was interpreted as evidence for a lack of cochlear amplification. If true, this would make them unique among mammals. However, both theoretical considerations on the generation of DPOAE as well as previously published experimental evidence challenge this assumption. We measured DPOAE and stimulus-frequency otoacoustic emissions (SFOAE) in three species of African mole-rats (Ansell's mole-rat - Fukomys anselli; Mashona mole-rat - Fukomys darlingi; naked mole-rat - Heterocephalus glaber) and found unexceptional otoacoustic emission values. Measurements were complicated by the remarkably long, narrow and curved external ear canals of these animals, for which we provide a morphological description. Both DPOAE and SFOAE displayed the highest amplitudes near 1 kHz, which corresponds to the region of best hearing in all tested species, as well as to the frequency region of the low-frequency acoustic fovea previously described in Ansell's mole-rat. Thus, the cochlea in African mole-rats shares the ability to generate evoked otoacoustic emission with other mammals.


Assuntos
Cóclea , Emissões Otoacústicas Espontâneas , Animais , Emissões Otoacústicas Espontâneas/fisiologia , Cóclea/fisiologia , Audição , Testes Auditivos , Ratos-Toupeira
11.
PLoS Genet ; 20(3): e1011211, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498576

RESUMO

Age-related hearing loss (ARHL) is a common sensory impairment with complex underlying mechanisms. In our previous study, we performed a meta-analysis of genome-wide association studies (GWAS) in mice and identified a novel locus on chromosome 18 associated with ARHL specifically linked to a 32 kHz tone burst stimulus. Consequently, we investigated the role of Formin Homology 2 Domain Containing 3 (Fhod3), a newly discovered candidate gene for ARHL based on the GWAS results. We observed Fhod3 expression in auditory hair cells (HCs) primarily localized at the cuticular plate (CP). To understand the functional implications of Fhod3 in the cochlea, we generated Fhod3 overexpression mice (Pax2-Cre+/-; Fhod3Tg/+) (TG) and HC-specific conditional knockout mice (Atoh1-Cre+/-; Fhod3fl/fl) (KO). Audiological assessments in TG mice demonstrated progressive high-frequency hearing loss, characterized by predominant loss of outer hair cells, and a decreased phalloidin intensities of CP. Ultrastructural analysis revealed loss of the shortest row of stereocilia in the basal turn of the cochlea, and alterations in the cuticular plate surrounding stereocilia rootlets. Importantly, the hearing and HC phenotype in TG mice phenocopied that of the KO mice. These findings suggest that balanced expression of Fhod3 is critical for proper CP and stereocilia structure and function. Further investigation of Fhod3 related hearing impairment mechanisms may lend new insight towards the myriad mechanisms underlying ARHL, which in turn could facilitate the development of therapeutic strategies for ARHL.


Assuntos
Actinas , Perda Auditiva de Alta Frequência , Animais , Camundongos , Actinas/genética , Actinas/metabolismo , Cóclea/metabolismo , Forminas/genética , Estudo de Associação Genômica Ampla , Audição , Camundongos Knockout , Polimerização
12.
PLoS One ; 19(3): e0299597, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38452034

RESUMO

BACKGROUND: Extrusion of electrodes outside the cochlea and tip fold overs may lead to suboptimal outcomes in cochlear implant (CI) recipients. Intraoperative measures such as Trans-Impedance Matrix (TIM) measurements may enable clinicians to identify electrode malposition and direct surgeons to correctly place the electrode array during surgery. OBJECTIVES: To assess the current literature on the effectiveness of TIM measurements in identifying extracochlear electrodes and tip fold overs. METHODS: A scoping review of studies on TIM-based measurements were carried out using the Databases-Medline/PubMed, AMED, EMBASE, CINAHL and the Cochrane Library following PRISMA guidelines. Eleven full texts articles met the inclusion criteria. Only human studies pertaining to TIM as a tool used in CI were included in the review. Further, patient characteristics, electrode design, and TIM measurement outcomes were reported. RESULTS: TIM measurements were available for 550 implanted ears with the subjects age ranged between 9 months to 89 years. Abnormal TIM measurements were reported for 6.55% (36). Tip fold over was detected in 3.64% (20) of the cases, extracochlear electrodes in 1.45% (8), and 1.45% (8) were reported as buckling. Slim-modiolar electrode array designs were more common (54.71%) than pre-curved (23.34%) or lateral wall (21.95%) electrode array. Abnormal cochlear anatomy was reported for five ears (0.89%), with normal cochlear anatomy for all other patients. CONCLUSION: TIM measurement is a promising tool for the intraoperative detection of electrode malposition. TIM measurement has a potential to replace intraoperative imaging in future. Though, TIM measurement is in its early stages of clinical utility, intuitive normative data sets coupled with standardised criteria for detection of abnormal electrode positioning would enhance its sensitivity.


Assuntos
Implante Coclear , Implantes Cocleares , Humanos , Cóclea/cirurgia , Implante Coclear/métodos , Impedância Elétrica , Eletrodos Implantados , Resultado do Tratamento
13.
PLoS One ; 19(3): e0298529, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483863

RESUMO

Salidroside (SAL) is a phenol glycoside compound found in plants of the Rhodiola genus which has natural antioxidant and free radical scavenging properties. SAL are able to protect against manganese-induced ototoxicity. However, the molecular mechanism by which SAL reduces levels of reactive oxygen species (ROS) is unclear. Here, we established an in vitro gentamicin (GM) ototoxicity model to observe the protective effect of SAL on GM-induced hair cells (HC) damage. Cochlear explants of postnatal day 4 rats were obtained and randomly divided into six groups: two model groups (treatment with 0.2 mM or 0.4 mM GM for 24 h); two 400 µmol/L SAL-pretreated groups pretreatment with SAL for 3 h followed by GM treatment (0.2 mM or 0.4 mM) for 24 h; 400 µmol/L SAL group (treatment with SAL for 24 h); control group (normal cultured cochlear explants). The protective effects of SAL on GM-induced HC damage, and on mRNA and protein levels of antioxidant enzymes were observed. HC loss occurred after 24 h of GM treatment. Pretreatment with SAL significantly reduced GM-induced OHC loss. In cochlear tissues, mRNA and protein levels of NRF2 and HO-1 were enhanced in the GM alone group compared with the SAL pretreatment GM treatment group. SAL may protect against GM-induced ototoxicity by regulating the antioxidant defense system of cochlear tissues; SAL can activate NRF2/HO-1 signaling, inhibit NF-κB activation, activate AKT, and increase inhibitory phosphorylation of GSK3ß to decrease GSK3 activity, all of which exert antioxidant effects.


Assuntos
Gentamicinas , Glucosídeos , Ototoxicidade , Ratos , Animais , Gentamicinas/toxicidade , Gentamicinas/metabolismo , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Células Ciliadas Auditivas , Cóclea/metabolismo , Fenóis/farmacologia , Fenóis/metabolismo , RNA Mensageiro/metabolismo
14.
J Biomech Eng ; 146(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38470372

RESUMO

The cilia of the outer hair cells (OHCs) are the key microstructures involved in cochlear acoustic function, and their interactions with lymph in the cochlea involve complex, highly nonlinear, coupled motion and energy conversions, including macroscopic fluid-solid coupling. Recent optical measurements have shown that the frequency selectivity of the cochlea at high sound levels is entirely mechanical and is determined by the interactions of the hair bundles with the surrounding fluid. In this paper, an analytical mathematical model of the spiral cochlea containing macro- and micromeasurements was developed to investigate how the phonosensitive function of OHCs' motions is influenced by the macrostructural and microstructural fluid-solid coupling in the spiral cochlea. The results showed that the macrostructural and microstructural fluid-solid coupling exerted the radial forces of OHCs through the flow field, deflecting the cilia and generating frequency-selective properties of the microstructures. This finding showed that microstructural frequency selectivity arises from the radial motions of stereocilia hair bundles and enhances the hearing of sound signals at specific frequencies. It also implied that the macrostructural and microstructural fluid-solid couplings influence the OHCs' radial forces and that this is a key factor in the excitation of ion channels that enables their activity in helping the brain to detect sound.


Assuntos
Cóclea , Audição , Células Ciliadas Auditivas Externas , Movimento (Física) , Modelos Teóricos
15.
J Int Adv Otol ; 20(1): 89-93, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38454296

RESUMO

Cochlear implantation has become a standard of care for a child diagnosed with bilateral profound sensorineural hearing loss with a structured surgical standard operating procedure. A 3-year-old boy with bilateral profound prelingual sensorineural deafness underwent a Med-EL Sonata Ti100 implant. We faced a peculiar situation intraoperatively after inserting the electrodes and closing the wound. The impedance recording indicated high ground path impedance with short-circuiting of few electrodes. As a bionic implant, its electronic components may at times malfunction both intraoperatively and/or postoperatively; therefore, neural response telemetry (NRT) was invented to check it. By using NRT and a few milliliters of normal saline, we were able to diagnose as well as rectify the malfunctioning of the implant.


Assuntos
Implante Coclear , Implantes Cocleares , Perda Auditiva Neurossensorial , Pré-Escolar , Humanos , Masculino , Cóclea/cirurgia , Implante Coclear/efeitos adversos , Implante Coclear/métodos , Implantes Cocleares/efeitos adversos , Perda Auditiva Bilateral/cirurgia , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/cirurgia , Solução Salina , Telemetria/métodos
16.
Hear Res ; 445: 108996, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38547565

RESUMO

Acute noise-induced loss of synapses between inner hair cells (IHCs) and auditory nerve fibers (ANFs) has been documented in several strains of mice, but the extent of post-exposure recovery reportedly varies dramatically. If such inter-strain heterogeneity is real, it could be exploited to probe molecular pathways mediating neural remodeling in the adult cochlea. Here, we compared synaptopathy repair in CBA/CaJ vs. C57BL/6J, which are at opposite ends of the reported recovery spectrum. We evaluated C57BL/6J mice 0 h, 24 h, 2 wks or 8 wks after exposure for 2 h to octave-band noise (8-16 kHz) at either 90, 94 or 98 dB SPL, to compare with analogous post-exposure results in CBA/CaJ at 98 or 101 dB. We counted pre- and post-synaptic puncta in immunostained cochleas, using machine learning to classify paired (GluA2 and CtBP2) vs. orphan (CtBP2 only) puncta, and batch-processing to quantify immunostaining intensity. At 98 dB, both strains show ongoing loss of ribbons and synapses between 0 and 24 h, followed by partial recovery, however the extent and degree of these changes were greater in C57BL/6J. Much of the synaptic recovery is due to transient reduction in GluA2 intensity in synaptopathic regions. In contrast, CtBP2 intensity showed only transient increases (at 2 wks). Neurofilament staining revealed transient extension of ANF terminals in C57BL/6J, but not in CBA/CaJ, peaking at 24 h and reverting by 2 wks. Thus, although interstrain differences in synapse recovery are dominated by reversible changes in GluA2 receptor levels, the neurite extension seen in C57BL/6J suggests a qualitative difference in regenerative capacity.


Assuntos
Perda Auditiva Provocada por Ruído , Camundongos , Animais , Perda Auditiva Provocada por Ruído/etiologia , Perda Auditiva Provocada por Ruído/metabolismo , Camundongos Endogâmicos C57BL , Limiar Auditivo/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Camundongos Endogâmicos CBA , Cóclea/metabolismo , Sinapses/metabolismo
17.
J Assoc Res Otolaryngol ; 25(2): 179-199, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472515

RESUMO

PURPOSE: Pneumococcal meningitis is a major cause of hearing loss and permanent neurological impairment despite widely available antimicrobial therapies to control infection. Methods to improve hearing outcomes for those who survive bacterial meningitis remains elusive. We used a mouse model of pneumococcal meningitis to evaluate the impact of mononuclear phagocytes on hearing outcomes and cochlear ossification by altering the expression of CX3CR1 and CCR2 in these infected mice. METHODS: We induced pneumococcal meningitis in approximately 500 C57Bl6 adult mice using live Streptococcus pneumoniae (serotype 3, 1 × 105 colony forming units (cfu) in 10 µl) injected directly into the cisterna magna of anesthetized mice and treated these mice with ceftriaxone daily until recovered. We evaluated hearing thresholds over time, characterized the cochlear inflammatory response, and quantified the amount of new bone formation during meningitis recovery. We used microcomputed tomography (microCT) scans to quantify cochlear volume loss caused by neo-ossification. We also performed perilymph sampling in live mice to assess the integrity of the blood-perilymph barrier during various time intervals after meningitis. We then evaluated the effect of CX3CR1 or CCR2 deletion in meningitis symptoms, hearing loss, macrophage/monocyte recruitment, neo-ossification, and blood labyrinth barrier function. RESULTS: Sixty percent of mice with pneumococcal meningitis developed hearing loss. Cochlear fibrosis could be detected within 4 days of infection, and neo-ossification by 14 days. Loss of spiral ganglion neurons was common, and inner ear anatomy was distorted by scarring caused by new soft tissue and bone deposited within the scalae. The blood-perilymph barrier was disrupted at 3 days post infection (DPI) and was restored by seven DPI. Both CCR2 and CX3CR1 monocytes and macrophages were present in the cochlea in large numbers after infection. Neither chemokine receptor was necessary for the induction of hearing loss, cochlear fibrosis, ossification, or disruption of the blood-perilymph barrier. CCR2 knockout (KO) mice suffered the most severe hearing loss. CX3CR1 KO mice demonstrated an intermediate phenotype with greater susceptibility to hearing loss compared to control mice. Elimination of CX3CR1 mononuclear phagocytes during the first 2 weeks after meningitis in CX3CR1-DTR transgenic mice did not protect mice from any of the systemic or hearing sequelae of pneumococcal meningitis. CONCLUSIONS: Pneumococcal meningitis can have devastating effects on cochlear structure and function, although not all mice experienced hearing loss or cochlear damage. Meningitis can result in rapid progression of hearing loss with fibrosis starting at four DPI and ossification within 2 weeks of infection detectable by light microscopy. The inflammatory response to bacterial meningitis is robust and can affect all three scalae. Our results suggest that CCR2 may assist in controlling infection and maintaining cochlear patency, as CCR2 knockout mice experienced more severe disease, more rapid hearing loss, and more advanced cochlear ossification after pneumococcal meningitis. CX3CR1 also may play an important role in the maintenance of cochlear patency.


Assuntos
Surdez , Perda Auditiva , Meningites Bacterianas , Meningite Pneumocócica , Camundongos , Animais , Meningite Pneumocócica/complicações , Meningite Pneumocócica/patologia , Osteogênese , Receptores de Quimiocinas , Microtomografia por Raio-X , Cóclea/patologia , Perda Auditiva/etiologia , Meningites Bacterianas/complicações , Meningites Bacterianas/patologia , Surdez/patologia , Camundongos Transgênicos , Camundongos Knockout , Fibrose
18.
Hear Res ; 445: 108989, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518394

RESUMO

Age-related hearing loss affects a large and growing segment of the population, with profound impacts on quality of life. Age-related pathology of the cochlea-the mammalian hearing organ-underlies age-related hearing loss. Because investigating age-related changes in the cochlea in humans is challenging and often impossible, animal models are indispensable to investigate these mechanisms as well as the complex consequences of age-related hearing loss on the brain and behavior. In this review, we advocate for a comparative and interdisciplinary approach while also addressing the challenges of comparing age-related hearing loss across species with varying lifespans. We describe the experimental advantages and limitations as well as areas for future research in well-established models of age-related hearing loss, including mice, rats, gerbils, chinchillas, and birds. We also indicate the need to expand characterization of age-related hearing loss in other established animal models, especially guinea pigs, cats, and non-human primates, in which auditory function is well characterized but age-related cochlear pathology is understudied. Finally, we highlight the potential of emerging animal models for advancing our understanding of age-related hearing loss, including deer mice, with their notably extended lifespans and preserved hearing, naked mole rats, with their exceptional longevity and extensive vocal communications, as well as zebrafish, which offer genetic tractability and suitability for drug screening. Ultimately, a comparative and interdisciplinary approach in auditory research, combining insights from various animal models with human studies, is key to robust and reliable research outcomes that better advance our understanding and treatment of age-related hearing loss.


Assuntos
Surdez , Presbiacusia , Animais , Cobaias , Envelhecimento/genética , Cóclea , Potenciais Evocados Auditivos do Tronco Encefálico , Mamíferos , Modelos Animais , Qualidade de Vida , Peixe-Zebra , Gatos
19.
J Int Adv Otol ; 20(1): 35-43, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38454287

RESUMO

BACKGROUND: The present study aims to determine the possible low dose-dependent adverse effects of 2.45 GHz microwave exposure and Wi-Fi frequency on the cochlea. METHODS: Twelve pregnant female rats (n=12) and their male newborns were exposed to Wi-Fi frequencies with varying electric field values of 0.6, 1.9, 5, 10 V/m, and 15 V/m during the 21-day gestation period and 45 days after birth, except for the control group. Auditory brainstem response testing was performed before exposure and sacrification. After removal of the cochlea, histopathological examination was conducted by immunohistochemistry methods using caspase (cysteine-aspartic proteases, cysteine aspartates, or cysteine-dependent aspartate-directed proteases)-3, -9, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Kruskal-Wallis and Wilcoxon tests and multivariate analysis of variance were used. RESULTS: Auditory brainstem response thresholds in postexposure tests increased statistically significantly at 5 V/m and above doses. When the number of apoptotic cells was compared in immunohistochemistry examination, significant differences were found at 10 V/m and 15 V/m doses (F(5,15)=23.203, P=.001; Pillai's trace=1.912, η2=0.637). As the magnitude of the electric field increased, all histopathological indicators of apoptosis increased. The most significant effect was noted on caspase-9 staining (η2 c9=0.996), followed by caspase-3 (η2 c3=0.991), and TUNEL staining (η2 t=0.801). Caspase-3, caspase-9, and TUNEL-stained cell densities increased directly by increasing the electric field and power values. CONCLUSION: Apoptosis and immune activity in the cochlea depend on the electric field and power value. Even at low doses, the electromagnetic field in Wi-Fi frequency damages the inner ear and causes apoptosis.


Assuntos
Orelha Interna , Micro-Ondas , Gravidez , Masculino , Feminino , Ratos , Animais , Micro-Ondas/efeitos adversos , Caspase 3/metabolismo , Caspase 3/farmacologia , Caspase 9/farmacologia , Cisteína/farmacologia , Cóclea/patologia , Apoptose/fisiologia
20.
Otol Neurotol ; 45(4): e315-e321, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38478410

RESUMO

INTRODUCTION: Preservation of residual hearing after cochlear implantation allows for electroacoustic stimulation, which leads to better music appreciation, noise localization, and speech comprehension in noisy environments. Real-time intraoperative electrocochleography (rt-ECochG) monitoring has shown promise in improving residual hearing rates. Four-point impedance (4PI) is being explored as a potential biomarker in cochlear implantation that has been associated with fibrotic tissue response, hearing loss, and dizziness. In this study, we explore whether monitoring both rt-ECochG intraoperatively and postoperative 4PI improves predictions of the preservation of residual hearing. METHODS: This was a prospective cohort study. Adults with residual acoustic hearing underwent cochlear implantation with intraoperative intracochlear electrocochleography (ECochG) monitoring. The surgeon responded to a drop in ECochG signal amplitude of greater than 30% by a standardized manipulation of the electrode with the aim of restoring the ECochG. At the end of the procedure, the ECochG signal was categorized as being maintained or having dropped more than 30%. 4PI was measured on 1 day, 1 week, and 1 and 3 months after cochlear implantation. Residual hearing was measured by routine pure-tone audiogram at 3 months postoperatively. The ECochG category and 4PI impedance values were entered as factors in a multiple linear regression predicting the protection of residual hearing. RESULTS: Twenty-six patients were recruited. Rt-ECochG significantly predicted residual hearing at 3 months (t test; mean difference, 37.7%; p = 0.002). Inclusion of both 1-day or 3-month 4PI in a multiple linear regression with rt-ECochG markedly improved upon correlations with residual hearing compared with the rt-ECochG-only model (rt-ECochG and 1-d 4PI model, R2 = 0.67; rt-ECochG and 3-mo 4PI model, R2 = 0.72; rt-ECochG-only model, R2 = 0.33). CONCLUSIONS: Both rt-ECochG and 4PI predict preservation of residual hearing after cochlear implantation. These findings suggest that the biological response of the cochlea to implantation, as reflected in 4PI, is an important determinant of residual hearing, independent of the acute effects on hearing during implant surgery seen with rt-ECochG. We speculate that 4PI relates to inflammation 1 day after implantation and fibrosis at 3 months.


Assuntos
Implante Coclear , Implantes Cocleares , Adulto , Humanos , Implante Coclear/métodos , Estudos Prospectivos , Impedância Elétrica , Cóclea/cirurgia , Audição , Audiometria de Resposta Evocada/métodos , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...